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ABSTRACT

Any prior information an experimenter has should be incorporated into the

© design of further experiments. Assume such information is expressed as
probabilities that each parameter of the full factorial model is nonzero.
This report develops optimal design procedures by posing the experimentsal
design problem as a finite decision problem. -Bayes and mini-max design
strategies are then derived and their application illustrated. The major
computational step is the evaluation of all ‘possible matchings of physical
variables to the abstract variables of all potential designs. The technigue
of telescoping sequences of blocks permits the consideration of experiments
to be performed in stages.

SYMBOLS
B complete set of parameters or coefficients
B(h) subgroup of B used at the pth stopping point of experiment
h denotes the stopping point of the experiment
S(i,h) the set of standard order subscripts of the elements of Bi B(n)
n number of factors or‘independent variables
n, ‘ - number of treatment combinations at the hth stopping point
Py prior probability of a block effect not being zero
ps prior probability that Bi £0% 0
Pye probability the experiment terminates at exactly the hmfl
stopping point
U total expected utility for a given strategy
U(h) total expected utility of the pth stopping point for a given

strategy




Uli,k) expected utlility gained by assigning the estimator for
B, ®B(h) to B

Ui,0) expected utllity gained by assigning the estimator for f. (:)B(h
to the block effect that alias set is confounded with

uiimg utility assigned to an unbiased egtimate of 5 at the h

stopping point of the experiment th
}A;Xquws independent variables (design)
X%pﬁT dummy independent varisbles:which are ildentically equal to one

for all treatment combinations

independent variables (physical) i =1,2,..050

& a group operation

Y random response or dependent variable

v observed value of Y

ﬁAJﬁD;»Q. parameters of a model equation in the design variables
@1’§Z’ parameters of a model equation in the physical variables
ﬁQﬁﬁz constant terms of the model equation

By, e estimates of the parameters Bl,...
estimates of the parameters B,,.
B, (x B(h) coset obtained by multiplying all elements of B(h) by Bi

& random error
INTRODUCTION

In a two-level full factorial experiment with n independent variables
,X., ... there are 2" possible distinet treatment combinations. If

e trestment combinations are performed, it is possible -to estimate
85 1n the model equation of the form




»
i

= B B, + BpXp + BygXp Xy * B,

+

Packa®c * Ppcfe¥c * Papcdfn®slc v (1)

Bapo, Lafglo - + 8

where © 1s a random variable with mean zero and finite wvariance.

It will be convenient at this point to introduce an alternate notation for

equation (1). Let the n independent variables be denoted as X, ..., X
Nurber the 2" B's in equation (1) from B. to B 0 and consider the
following equation similar to equation (1) 27-1

Y = BO + Ble + B2X2 + BBX:LX2 + B¥X3 +

+ ..+ ...
P n XlXZ Xn *o

Equation (1) and equation (2) are both written in what is called the standard
order. If the subscripts of the f's are rewritten as n-digit binary
numbers, it becomes quite obvious how the terms and coefficients of eguation
(2) are related to their standard order number. For example, let n = L

and consider the following equation where the subscripts on the p's are
written as binary numbers.

L= By * B F B fy T PR

T Proofs T Pronfsfy Ptk

T B KR B1000%% * Pro01¥1y (3)
* Pro10®i¥e * Pronafitety T Prioofuts

X

T Byt * By KKKy F By BB

In general a B whose subscript in binary notation has ones in the i
ik locations from the right is the coefficient of the X, X. ...X,
ifteraction. 1t Tk

l.’ 12}
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Tt is well known that the set of all 2 coefficients or parameters form
oup denoted B under the appropriate operation denoted C) . In the
notation this operation is simply commutative multiplication
ok Cters with the exponents reduced modulo 2. In the binary type
notation thls operation may also be denoted C) and is defined as

%zr@;grﬁ = g‘)m m ) ®'6k k k

el 1 nn-l"""1

= £, .
undn”le,.@l

where d, (k +om, Jmod 2).

Thus for exsmple
e

wx. e T 22 = Ppy

and

F ) B = .
Po111 ®P1110 = Prooy

A regular fractional replicate of the full factorial design does not allow
separate estimation of all of the B's. Certain linear combinations of

them can be estimsted however. The aliased sets of parameters which can

be estlmqted depends upon the treatment combinations composing the fractional
?eylicage, or equivalently upon the choice of the defining parameter group

Holms and Sidik (ref. 1) present a discussion of double (and multiple)

duLegﬂ’ ing sequences of blocks. Telescoping allows an experimenter to

erform & factorial experiment in stages where the starting stage is a

1 regular fractional replicate and the final stage is some larger

rular fraction. IHach succeeding stage adds treatment combinations to

se already performed in earlier stages. In order to retain orthogonality
thoganui blocklng each stage must be a power of two times the size
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This requirement implies that the d.p.g. defining the

regular fraction at any stage must be a subgroup of the d.p.g. of the
evious stage. Since multiple telescoping allows several possible choices
subgroups from each preceding group and each such choice may correspond

to a potential stopping point we will simply index the stopping points by

n and ignore the relations among the groups. Thus the d.p.g.'s that

define fractional replicates at the stopping points are subgroups B(h)

of B. The gliased sets of parameters at each stopping point are the

cosets 51{535(h>°

-y B
[
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>4

o)
By



5

At this point a distinction between physical and design variables will be
made. The physical variables in an experiment will be denoted as X , X, ...,
Xn' Fach Xi is chosen to represent one of the physical variables and is

fixed for the remainder of the experiment. For example

Xl = temperature
X2 = Time
Xn = velocity

The design variables will be denoted as XA’ X, XC, . and so forth.

These variables represent asbstractions and tab?es éxist (for example, the

NBS tebles (ref. 2) or Addelman's tables (ref. 3)) which tabulate experimental
designs in terms of these design variables. When an experimenter consults

one of these tables and chooses a design, he must then determine a matching

of the design variables and the physical variables. Ordinarily the choice

is arbitrary because the experimenter is not assumed to have any prior
information available which would indicate one matching might be preferred

to another. We consider the problem of choosing a best design under the

following conditions of prior knowledge:
1. For each Bi the experimenter can specify b, = P{Fi % O} .

2. For each PB. and each h . denoting a possible stopping point of
the experiment the eXperimenter can specify the value to him of obtaining
an unbiased estimate of B,. This is denoted by ui(h).

3. For each h denoting a possible stopping point of the telescoping
experimegﬁ the experimenter can specify p_, = probability of stopping exactly
. ; sh
at the h™ stopping point.

Recall that none of the P's may be separately estimated from a fractional
factorial experiment unless some assumptions about certain others of the
B's are introduced. Conditions one and two above provide assumptions

that will enable the experimenter to assign the estimator for an alias

set to a single parameter from the glias set and evaluate the conseguences
of this.

It is also evident that changing the matching of design and physical
varisbles will change the alias sets. TFor if the matching for n = L 1is

Xl = XA
L, =Xy

_ (&)
X3 = X,
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then the alias set {ﬁA, 53, BDBA’ QD> is mapped into {ﬁQOOl’ 6oo:LQ’
Brion Brooo)d = {Bys By Byps Bgy. Bub the matching

L=%
X, =X
2 A
) - - (5)
xg = X
X, = X,

Maps {SAf Pgs Prpa’ %} into <BOOlO’ Pooor? Por11’ B01oo> = {By Bys B By)

The steps of the design and performance of the experiment may now be
represented as a finite discrete game between the experimenter and nature.
The decision space E for the experimenter is composed of the choice of
initial defining parameter group, choice of sequence(s) of subgroups that
define the telescoping, choice of physical-design variable matching, and the
cholce of parasmeter-estimator matching. The decision space N for nature
consists of the choice of which of the PB's will be nonzero and the choice
of the stopping point of the experiment.

A flow diasgram is presented in fig. 1 which indicates the sequence of
cholices to be made by the experimenter and nature.

It should be noted that the order of presentation shown in fig. 1 of the
choices of nature and the experimenter are not necessarily in temporal
order. The cholce of d.p.g. and physical-design varigble matching are
interchangeable but must be made before the actual execution of the
experiment.  Nature's choice of the parameter values would normally be
consildered to be made prior to anything the experimenter does. However, it
does no harm to conceive of nature being permitted to choose the parameter
values after the experiment is performed. In fact, this concept is more
convenlent in describing the Bayes decision procedure for the experimenter.

Once given the structure of a game or a decision problem and the utilities
of the outcomes, the statistician must devise a method for choosing among
the pogelble alternatives (i.e., choose a strategy) so that a desirable
outcome lg finally attained. '

There are two general principles by which strategies are ordered which are
in current use. One is the Bayes principle and the other is the mini-max
principle.



The Bayes Solution

The Bayes procedure assumes that nature is an indifferent participant in
the game. Thus, the choices that nature makes are independent of the
choices avaellable to the experimenter but instead are made according to a
specified probability distribution. Any information the experimenter may
have concerning the strategy (i.e., the specified probability distribution)
nature will follow is useful information that should be incorporated into
the decision procedure. The strategy for the experimenter which maximizes
the utility, given the assumed strategy for nature, is the Bayes strategy.

Before considering how best to match physical and design varisbles let us
assume that some matching has been made. Then consider the problem of
matching estimators and parameters at the nth stopping point. The d.p.g.
is B(h) and the alias sets are all those distinct cosets of the form

B; ® B(n) = {sil, Py oo By ) (6)
. "

If the parameter 5ke B. C) B(h) and the estimator for that alias set is
assigned to f,, then, aSsuming independence, the prior probability that
the estimator will be unbiased is

(1 *pj)

je 2(;&1) | (7)
J

Since wu.(h) 1is the utility of an unbiased estimate of Si at the hbh

stoppinglpoint

U(1,k) = u(h) [ | (2 -»,) (8)

je 8(i,h)
itk

is the expected utility of the decision to assign the estimator for the

alias set B, (:) B(h) to the parameter f . Thus the Bayes strategy is

to assign theé estimator to the parameter of the alias set which maximizes

this expected utility. A specilal case requires separate discussion.

Suppose that an alias set is confounded with some block effect. Agsume

that prior probabilities can be assigned to the event that each block

effect will be nonzero and assume the utility of an unbiased estimate of

“each block effect can be specified. Then this information can be incorporated
into the decision procedure by computing the two expected utilities.

0(i,k) = w(n) T T(1-p,) (1 -p) (9)
je 8(1,h)
itk




0(1,p) = u ! (1 - pj) {10)
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ad utility gsined by a551gn1nﬂ the estimator for
to the block effect

would expect wu_ = 0 and hence U(i,b) = O thus not
the celeulation in equation (10).

-

on with bleck effects it 1s also ilmportant to note that depending
pa rameters are defined, the estimator for the d.p.g.
rith blocks

‘ sets are disjoint and the estimators for each alias set sre
0T each other, 1t follows that the choice of parameter from one
buld not influyence the choice from another alias set. Thus for
natehing of physical and design varigbles, the chosen defining

nd th@ phosen estimator-parameter matching, the expected utility

o) = %ﬁa ) (12)

wmrtjon is over all the distinct cosets at the hth stage, and
of k within each coset which maximizes U(i,k). By
page 5 it 1s also assumed that the experimenter can specify

”=1t1es of stopplng exactly at each of the stopping polnts. . Thus,

(12)

total expected utility over &ll the stages given the choice
ing parametcw groups and physical-design variable mstching.

Bayes procedure 1s then to compute U for all possible distinct
? d.p.g.te and physical-design variable matchings and use any

LT

1 glves the maximum U,

Mini-Msx Solution

l-max strategy, the statisticlan assumes nature to be su

ey wno will choose alternatives agvailable which will minimize
utl lﬂty he statistician may gain. Thus the experimenter is the
1ay

ser and nature is the minimizing player.
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A strategy for nature involves two component choices: the choice of which
parameters will be nonzero and the choice of the path and stopping point

of the telescoping. One choice available to nature which the experimenter
has no influence upon is the choice of nonzero parameters. In fact, it is
possible that nature may choose to let every parameter be nonzero. Irn this
instance it will not be possible to obtaln unbiased estimates for any
parameter until the full replicate is run. If the utility function is
restricted to be zero when the estimator is biased, then there is zero
utility except for the full replicate. Thus, the only possible way for the
experimenter to obtain a gain is to design for the full replicate. However,
nature also may choose the stopping stage and so to minimize the experimenter's
utility, any stage other than the full replicate may be chosen giving a
utility of zero. Thus, any strategy at all that the experimenter uses will
be a mini-max strategy. ‘

Two less aggressive strategies for nature are conceivable. ' The first assumes
that nature will still choose to have every parameter nonzerc but will stop
the experiment at one of the stages according to prior probabilities known

by the experimenter. Then the only reasonable gpproach for the experimenter
is to choose a design which maximizes the utility of the full factorial.
Clearly this only involves minimizing losses due to block confounding.

The second of these less aggressive strategies allows that nature will choose
the parameters to be nonzero according to probabilities known to the experi-
menter but will choose the stopping stage so as to minimize the experimenter's
maximum utility. To find the mini-max strategy, the tree form of the game
can be reduced to the form of a rectangular game and the technique of linear
programming applied to determine the optimal strategies.. Considering the

size of the tree in many problems it does not seem likely that this approach
would be computationally Ffeasible.

Assignment of Utility Functions

The utility function is a function defined upon the space of all possible
outcomes of a decision problem. This function describes the absolute

or relative value to the decision maker of each of these outcomes. Methods
of specifying the utility function based upon the axioms of utility theory
are given in Raiffa (ref. 4) and DeGroot (ref. 5). These methods involve
cholces of lotteries and would be extremely impractical and cumbersome

for most problems. Instead, the following five utility functions are
offered as being both practical and somewhat representative of the decision
makers preferences in the appropriate instances.

1l 1if estimator unbiased
1oou(n) = {o if not (13)
This i1s a utility function which simplifies the expected utility to be the
probability of getting an unbiased estimate of the parameter. This might
be a useful utility function in the more basic scientific exploration
where relative evaluations of the importance of specific parameters are not
possible.
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) _Jp, if unbiased ‘
2. u(B) = {)l if unbiased (14)

This simple utility function can be thought of as representing the prior
provabllity that an estimator will be unbiasedly estimating a nonzero
guantity. Such a utility function might be used in response surface or
optilmum seeking experiments. This is true because a zero parameter con-
tributes nothing toward being able to change the response by changing the
levels of the independent variables.

3, ui(h) _ {f@i; if unbiased (15)

if biased

where n_ = the number of treatment combinations at the hth stopping point.
This utility function could be useful in the situation where the experi-
mental error is large and the cost of many observations is not much more
than the cost of a few observations. The rationale for this is that the
variance of an estimator 1s proportional to the inverse of the number of
observations. Thus, one way to weight the value of an unbiased estimate
is to welght j@_proportionately to the inverse of the standard deviation,
that is, to n -

I, uﬁ(h) _ if unbiased (16)
0 if biased

In the opposite situation to (3), suppose the experimental error is negligible
but the cost of each observation is large so that the cost of the stage is
a first degree function of the number of treatments. Then this utility
function would weight the estimators more heavily at the early stages of the
design and penalize the later stages.

L if unbiased

5. u,(n) ={ N (17)
0 if biased
This is an elementary combination of functions (3) and (4) and is intended
for situations where both the costs of the observations are large and the
experimental error is large.
Furthermore, a utility function might consist of a combination of (1) or
(2) along with one of (3), (L4), or (5).
CONCLUDING . REMARKS

The two-level fractional factorial designs represent a class of designs of
experiments yielding a large number of estimates of first-degree effects
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and interactions for a small amount of experimentation. The main disadvan-
tage of this class of designs is that the estimates are always estimates
of aliased combinations of parameters. To make conclusions about single
parameters it is necessary to have some information about the parameters
from a source other than the experiment. If such information is available
before the experiment is performed, it may be incorporated into the design
of the experiment.

There are many situations in practice in which an experimenter may heave
varying amounts of information concerning the variables he wishes to
investigate. This paper has developed some optimal design procedures when
the prior information is:

1. TFor each parameter the experimenter states his prior probability
that it is not zero, and

2. For each parameter the experimenter states what it is worth to
him to obtain an unbiased estimate of it.

The information and decisions were formulated as a finite decision problem
and Bayes and mini-max procedures were developed.

The main components of the problem were (1) the choice of estimator-
parameter matching, (2) choice of physical-design variable matching, and
(3) evaluations of all possible defining parameter groups and sequences of
subgroups.

Modified Bayes and mini-max procedures which are computationally feasible
were developed and some potential utility functions were presented.

The procedures presented here (described more fully in ref. 6) should prove
to be of considerable value in application since the information reguired
is of a nature that is easily specified and the computations required
although tediocus are amenable to being programmed for a digital computer.
In fact, a computer program called NAMER (ref. 7) has been written and
documented which determines the Bayes physical-design variable matching
and the Bayes parameter-estimator matchings for a specified choice of
d.p.g.'s at each stopping point of the experiment. Anyone wishing more
information may write the authors at NASA Lewis Research Center, 21000
Brookpark Road, Cleveland, Ohio LL135.
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E - CHOOSE
INITIAL d. p. g.
E - DENOTES A CHOICE MADE
\ BY THE EXPERIMENTER
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VARIABLE MATCHING
4
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- YES DOES THIS STAGE NO .
GET COMPLETED
?
) | +*
E - CHOOSE
- PARAMETER-
FULL FACTORIAL MATCHING
. e
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ARE TO BE NONZERQ
NO
EXPERIMENTER
RECEIVES UTILITY
; E - CHOOSE
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OPTION TO
ATTEMPT _

Figure 1. - Flow chart representing the sequence of choices made by the experimenter and nature.
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